MuscleDBs
Contents
Introduction
Skeletal muscles have indispensable functions in human body and also possess prominent regenerative ability. The rapid emergence of Next Generation Sequencing (NGS) data in recent years offers us an unprecedented perspective to understand gene regulatory networks governing skeletal muscle development and regeneration. However, the data from public NGS database are often in raw data format or processed with different procedures, causing obstacles to make full use of them (Yuan et al., 2019) [1]. Herein, we have integrated all information about current databases developed to represent disparate and heterogeneous omics data (with a focus on transcriptomics data) generated for skeletal muscle in different species.
Databases
MuscleDB
Analysis of the model suggested that metabolic activation and recruitment of muscle fibers are closely related, but the degree of metabolic activation inferred from metabolite changes may differ from that of the fiber recruitment. Simulations with a mechanistic, mathematical model demonstrated that the activation as measured by metabolic response in single fibers is distinct from fiber recruitment that is characterized by the number (or mass) of each fiber type involved during a specific exercise. The results from this study underline the need for critical experiments that measure fiber recruitment and metabolism in order to simulate and quantify the contributions of type I and II fibers to the regulation of energy metabolism. Such experimental techniques could be used in combination with the computational model to investigate the relationships between the extents of metabolic activation, number of fibers recruited, and muscle groups engaged at different intensity exercise.
GeneXX
SKmDB
MGS resource
NeuroMuscleDB
[Human Skeletal Muscle Proteome Project]
SkeletalVis
Summarized table of the databases
Database | Short description | Data type | Functionality | Statistics | Current status | Reference |
---|---|---|---|---|---|---|
Lai2007_O2_Transport_Metabolism. |
The mathematical model simulates oxygen transport and metabolism in skeletal muscle in response to a step change from a warm-up steady state to a higher work rate corresponding to exercise at different levels of intensity: moderate (M), heavy (H) and very heavy (VH). |
Lai et al., 2007 [2] |
Relevant |
Relevant |
Relevant |
Table1. Summarized table of the databases with transcriptomics data generated for skeletal muscle in different species.
References
- Yuan J, Zhou J, Wang H, and Sun H. SKmDB: an integrated database of next generation sequencing information in skeletal muscle. Bioinformatics. 2019 Mar 1;35(5):847-855. DOI:10.1093/bioinformatics/bty705 |
- Saucerman JJ and Bers DM. Calmodulin mediates differential sensitivity of CaMKII and calcineurin to local Ca2+ in cardiac myocytes. Biophys J. 2008 Nov 15;95(10):4597-612. DOI:10.1529/biophysj.108.128728 |
- Baker JS, McCormick MC, and Robergs RA. Interaction among Skeletal Muscle Metabolic Energy Systems during Intense Exercise. J Nutr Metab. 2010;2010:905612. DOI:10.1155/2010/905612 |
- Schönekess BO, Brindley PG, and Lopaschuk GD. Calcium regulation of glycolysis, glucose oxidation, and fatty acid oxidation in the aerobic and ischemic heart. Can J Physiol Pharmacol. 1995 Nov;73(11):1632-40. DOI:10.1139/y95-725 |
- Cohen P. The role of calcium ions, calmodulin and troponin in the regulation of phosphorylase kinase from rabbit skeletal muscle. Eur J Biochem. 1980 Oct;111(2):563-74. DOI:10.1111/j.1432-1033.1980.tb04972.x |
- Sola-Penna M, Da Silva D, Coelho WS, Marinho-Carvalho MM, and Zancan P. Regulation of mammalian muscle type 6-phosphofructo-1-kinase and its implication for the control of the metabolism. IUBMB Life. 2010 Nov;62(11):791-6. DOI:10.1002/iub.393 |
- Korzeniewski B. Regulation of oxidative phosphorylation through parallel activation. Biophys Chem. 2007 Sep;129(2-3):93-110. DOI:10.1016/j.bpc.2007.05.013 |
- Glancy B, Willis WT, Chess DJ, and Balaban RS. Effect of calcium on the oxidative phosphorylation cascade in skeletal muscle mitochondria. Biochemistry. 2013 Apr 23;52(16):2793-809. DOI:10.1021/bi3015983 |
- Territo PR, Mootha VK, French SA, and Balaban RS. Ca(2+) activation of heart mitochondrial oxidative phosphorylation: role of the F(0)/F(1)-ATPase. Am J Physiol Cell Physiol. 2000 Feb;278(2):C423-35. DOI:10.1152/ajpcell.2000.278.2.C423 |
- Olesen J, Kiilerich K, and Pilegaard H. PGC-1alpha-mediated adaptations in skeletal muscle. Pflugers Arch. 2010 Jun;460(1):153-62. DOI:10.1007/s00424-010-0834-0 |
- Popov DV, Lysenko EA, Kuzmin IV, Vinogradova V, and Grigoriev AI. Regulation of PGC-1α Isoform Expression in Skeletal Muscles. Acta Naturae. 2015 Jan-Mar;7(1):48-59.
- Miura S, Kai Y, Kamei Y, and Ezaki O. Isoform-specific increases in murine skeletal muscle peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) mRNA in response to beta2-adrenergic receptor activation and exercise. Endocrinology. 2008 Sep;149(9):4527-33. DOI:10.1210/en.2008-0466 |
- Yoshioka T, Inagaki K, Noguchi T, Sakai M, Ogawa W, Hosooka T, Iguchi H, Watanabe E, Matsuki Y, Hiramatsu R, and Kasuga M. Identification and characterization of an alternative promoter of the human PGC-1alpha gene. Biochem Biophys Res Commun. 2009 Apr 17;381(4):537-43. DOI:10.1016/j.bbrc.2009.02.077 |
- Zhang Y, Huypens P, Adamson AW, Chang JS, Henagan TM, Boudreau A, Lenard NR, Burk D, Klein J, Perwitz N, Shin J, Fasshauer M, Kralli A, and Gettys TW. Alternative mRNA splicing produces a novel biologically active short isoform of PGC-1alpha. J Biol Chem. 2009 Nov 20;284(47):32813-26. DOI:10.1074/jbc.M109.037556 |
- Thom R, Rowe GC, Jang C, Safdar A, White JP, and Arany Z. Hypoxic induction of vascular endothelial growth factor (VEGF) and angiogenesis in muscle by N terminus peroxisome proliferator-associated receptor gamma coactivator (NT-PGC)-1α. J Biol Chem. 2015 Aug 7;290(32):19543. DOI:10.1074/jbc.A113.512061 |
- Chang JS, Fernand V, Zhang Y, Shin J, Jun HJ, Joshi Y, and Gettys TW. NT-PGC-1α protein is sufficient to link β3-adrenergic receptor activation to transcriptional and physiological components of adaptive thermogenesis. J Biol Chem. 2012 Mar 16;287(12):9100-11. DOI:10.1074/jbc.M111.320200 |
- Zhang Y, Uguccioni G, Ljubicic V, Irrcher I, Iqbal S, Singh K, Ding S, and Hood DA. Multiple signaling pathways regulate contractile activity-mediated PGC-1α gene expression and activity in skeletal muscle cells. Physiol Rep. 2014 May 1;2(5). DOI:10.14814/phy2.12008 |
- Norrbom J, Sällstedt EK, Fischer H, Sundberg CJ, Rundqvist H, and Gustafsson T. Alternative splice variant PGC-1α-b is strongly induced by exercise in human skeletal muscle. Am J Physiol Endocrinol Metab. 2011 Dec;301(6):E1092-8. DOI:10.1152/ajpendo.00119.2011 |
- Ydfors M, Fischer H, Mascher H, Blomstrand E, Norrbom J, and Gustafsson T. The truncated splice variants, NT-PGC-1α and PGC-1α4, increase with both endurance and resistance exercise in human skeletal muscle. Physiol Rep. 2013 Nov;1(6):e00140. DOI:10.1002/phy2.140 |
- Popov DV, Bachinin AV, Lysenko EA, Miller TF, and Vinogradova OL. Exercise-induced expression of peroxisome proliferator-activated receptor γ coactivator-1α isoforms in skeletal muscle of endurance-trained males. J Physiol Sci. 2014 Sep;64(5):317-23. DOI:10.1007/s12576-014-0321-z |
- Chinsomboon J, Ruas J, Gupta RK, Thom R, Shoag J, Rowe GC, Sawada N, Raghuram S, and Arany Z. The transcriptional coactivator PGC-1alpha mediates exercise-induced angiogenesis in skeletal muscle. Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21401-6. DOI:10.1073/pnas.0909131106 |
- Tadaishi M, Miura S, Kai Y, Kawasaki E, Koshinaka K, Kawanaka K, Nagata J, Oishi Y, and Ezaki O. Effect of exercise intensity and AICAR on isoform-specific expressions of murine skeletal muscle PGC-1α mRNA: a role of β₂-adrenergic receptor activation. Am J Physiol Endocrinol Metab. 2011 Feb;300(2):E341-9. DOI:10.1152/ajpendo.00400.2010 |
- Wen X, Wu J, Chang JS, Zhang P, Wang J, Zhang Y, Gettys TW, and Zhang Y. Effect of exercise intensity on isoform-specific expressions of NT-PGC-1 α mRNA in mouse skeletal muscle. Biomed Res Int. 2014;2014:402175. DOI:10.1155/2014/402175 |
- Popov DV, Lysenko EA, Vepkhvadze TF, Kurochkina NS, Maknovskii PA, and Vinogradova OL. Promoter-specific regulation of PPARGC1A gene expression in human skeletal muscle. J Mol Endocrinol. 2015 Oct;55(2):159-68. DOI:10.1530/JME-15-0150 |
- Röckl KS, Witczak CA, and Goodyear LJ. Signaling mechanisms in skeletal muscle: acute responses and chronic adaptations to exercise. IUBMB Life. 2008 Mar;60(3):145-53. DOI:10.1002/iub.21 |
- https://link.springer.com/content/pdf/10.1007/978-3-540-69389-5_14.pdf
- Shin SY, Choo SM, Kim D, Baek SJ, Wolkenhauer O, and Cho KH. Switching feedback mechanisms realize the dual role of MCIP in the regulation of calcineurin activity. FEBS Lett. 2006 Oct 30;580(25):5965-73. DOI:10.1016/j.febslet.2006.09.064 |
- Shannon TR, Wang F, and Bers DM. Regulation of cardiac sarcoplasmic reticulum Ca release by luminal [Ca] and altered gating assessed with a mathematical model. Biophys J. 2005 Dec;89(6):4096-110. DOI:10.1529/biophysj.105.068734 |
- Groenendaal W, Jeneson JA, Verhoog PJ, van Riel NA, Ten Eikelder HM, Nicolay K, and Hilbers PA. Computational modelling identifies the impact of subtle anatomical variations between amphibian and mammalian skeletal muscle on spatiotemporal calcium dynamics. IET Syst Biol. 2008 Nov;2(6):411-22. DOI:10.1049/iet-syb:20070050 |
- https://e-space.mmu.ac.uk/315671/1/SENSORY%20PATHWAYS%20OF%20MUSCLE%20PHENOTYPIC%20PLASTICITY_FINAL_DEC2012.pdf
- Eilers W, Gevers W, van Overbeek D, de Haan A, Jaspers RT, Hilbers PA, van Riel N, and Flück M. Muscle-type specific autophosphorylation of CaMKII isoforms after paced contractions. Biomed Res Int. 2014;2014:943806. DOI:10.1155/2014/943806 |
- Bradshaw JM, Kubota Y, Meyer T, and Schulman H. An ultrasensitive Ca2+/calmodulin-dependent protein kinase II-protein phosphatase 1 switch facilitates specificity in postsynaptic calcium signaling. Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10512-7. DOI:10.1073/pnas.1932759100 |
- Gaertner TR, Kolodziej SJ, Wang D, Kobayashi R, Koomen JM, Stoops JK, and Waxham MN. Comparative analyses of the three-dimensional structures and enzymatic properties of alpha, beta, gamma and delta isoforms of Ca2+-calmodulin-dependent protein kinase II. J Biol Chem. 2004 Mar 26;279(13):12484-94. DOI:10.1074/jbc.M313597200 |